Earth observation has a crucial role in understanding and monitoring our planet’s health and changes. Spaceborne Synthetic Aperture Radar (SAR) has become a valuable technology for Earth monitoring, leading to a massive expansion of satellite launches. However, within the limited radio frequency (RF) band, Radio Frequency Interference (RFI) poses a significant challenge for SAR technology. RFI can have a substantial impact on the overall system performance and particularly on SAR image quality. To analyze and solve the interference problem, a simulator/emulator is required at the RF level to emulate and analyze the effects of different RFI sources on the final focused spaceborne SAR image. This paper presents an open-source RF-level SAR emulator for spaceborne applications called SEMUS. SEMUS is an integrated end-to-end framework for realistic spaceborne SAR scenarios that can generate raw RF data (Level-0) for an arbitrary scene and reconstruct the final SAR-focused image (Level-1). Moreover, the emulator is capable of injecting arbitrary RFI waveforms into the raw SAR data. The simulation results prove SEMUS’s ability to generate high-quality Level-0 SAR data above Melbourne, Australia. Affirming its capability, SEMUS can reconstruct Level-1 free of RFI or contaminated with interference.
Read full Publication